The Kauffman model on small-world topology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kauffman model on Small-World Topology

We apply Kauffman’s automata on small-world networks to study the crossover between the short-range and the infinite-range case. We perform accurate calculations on square lattices to obtain both critical exponents and fractal dimensions. Particularly, we find an increase of the damage propagation and a decrease in the fractal dimensions when adding long-range connections.

متن کامل

Stability of the Kauffman model.

Random Boolean networks, the Kauffman model, are revisited by means of a novel decimation algorithm, which removes variables that cannot be relevant to the asymptotic dynamics of the system. The major part of the removed variables have the same fixed state in all limit cycles. These variables are denoted as the stable core of the network and their number grows approximately linearly with N, the...

متن کامل

On the Kauffman Skein Modules

Abstract. Let k be a subring of the field of rational functions in α, s which contains α, s. Let M be a compact oriented 3-manifold, and let K(M) denote the Kauffman skein module of M over k. Then K(M) is the free k-module generated by isotopy classes of framed links in M modulo the Kauffman skein relations. In the case of k = Q(α, s), the field of rational functions in α, s, we give a basis fo...

متن کامل

Incomplete ordering of the voter model on small-world networks

– We investigate how the topology of small-world networks affects the dynamics of the voter model for opinion formation. We show that, contrary to what occurs on regular topologies with local interactions, the voter model on small-world networks does not display the emergence of complete order in the thermodynamic limit. The system settles in a stationary state with coexisting opinions whose li...

متن کامل

First passage percolation on the Newman-Watts small world model

The Newman-Watts model is given by taking a cycle graph of n vertices and then adding each possible edge (i, j), |i− j| 6 = 1 mod n with probability ρ/n for some ρ > 0 constant. In this paper we add i.i.d. exponential edge weights to this graph, and investigate typical distances in the corresponding random metric space given by the least weight paths between vertices. We show that typical dista...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica A: Statistical Mechanics and its Applications

سال: 2007

ISSN: 0378-4371

DOI: 10.1016/j.physa.2006.04.063